

Journal of Organometallic Chemistry 507 (1996) 281-282

Preliminary communication

The reaction of $[Fe_2(\eta-C_5H_5)_2(CO)(CNMe)(\mu-CO)(\mu-CNMe_2)]^+$ salts with trifluoromethanesulphonic acid $(HOSO_2CF_3)$

Conor Dowling, Anthony R. Manning *

Department of Chemistry, University College, Belfield, Dublin 4, Ireland

Received 3 July 1995

Abstract

In a non-coordinating solvent such as chloroform the very strong acid HOSO₂CF₃ reacts unexpectedly with $[Fe_2(\eta - C_5H_5)_2(CO)(CNMe)(\mu - CNMe_2)][SO_3CF_3]$ ([1][SO₃CF₃]) to give $[Fe_2(\eta - C_5H_5)_2(CO)_2\{\mu - CN(H)Me\}(\mu - CNMe_2)][SO_3CF_3]_2$, which deprotonates readily to $[Fe_2(\eta - C_5H_5)_2(CO)_2(\mu - CNMe)(\mu - CNMe_2)][SO_3CF_3]$, an isomer of [1] $[SO_3CF_3]$.

Keywords: Iron; Isocyanides; Migration; Protonation

The reaction of $[Fe_2(\eta-C_5H_5)_2(CO)_2(CNMe)_2]$ with MeOSO₂CF₃ gives two products, $[Fe_2(\eta-C_5H_5)_2(CO)$ (CNMe)(μ -CO)(μ -CNMe₂)][SO₃CF₃], ([1]]SO₃CF₃]) and $[Fe_2(\eta-C_5H_5)_2(CO)_2(\mu$ -CNME₂)_2][SO₃CF₃]_2, ([2] [SO₃CF₃]₂). However, [1][SO₃CF₃] does not react with MeOSO₂CF₃ to give [2][SO₃CF₃]₂ even in the absence of a solvent. Furthermore, in both [1]⁺ and [2]⁺ there is no evidence for *cis-trans* interconversion or for ligand site exchange [1]. This implies that there is a very high barrier to *t*-CNMe $\rightarrow \mu$ -CNMe migration (which must be accompanied by μ -CO \rightarrow *t*-CO) as once there the μ -CNMe ligand would be alkylated very readily to a μ -CNMe₂⁺ ligand (see below) (t = terminal).

Consequently, we were surprised to find that the addition of pure HOSO₂CF₃ (1.5 g, 10 mmol) to a solution of [1][SO₃CF₃] (1.1 g, 2 mmol) in chloroform solution at room temperature converts the *t*-CNMe ligand of the latter to a μ -CN(H)Me⁺ group and its μ -CO ligand to *t*-CO in a reaction which is shown by NMR spectroscopy to be quantitative. The product [Fe₂(η -C₅H₅)₂(CO₂){ μ - CN(H)Me}(μ -CNMe₂)][SO₃CF₃]₂ ([3][SO₃CF₃]₂) [2a] is related to [2][SO₃CF₃]₂ except that one μ -CN(H)Me⁺, and indeed the two have very similar IR spectra in the 1550–2100 cm⁻¹ region [2a]. However, [3][SO₃CF₃]₂ may be identified unambigu-

ously by its ¹H NMR spectrum which, in acidified CD_3CN solution, shows two equal resonances due to the distinguishable η -C₅H₅ groups, two unequal (ratio 3:6) Me resonances due to the CN(H)Me⁺ and CNMe₂⁺ ligands with CN(H)CH₃ coupling in the former and a broad singlet at $\delta = 11.70$ ppm due to the μ -CNMe proton. The spectroscopic data is that for the more important *cis*-[**3**][SO₃CF₃]₂ although it should be noted that its *trans* counterpart is also formed in the reaction but only with low yields. Different spectra are observed in the absence of excess acid and in different solvents owing to reversible H⁺ dissociation from the μ -CN(H)Me⁺ ligand (see below).

The reaction is not completely general; it takes place with analogues of [2][SO₃CF₃] in which the μ -CNMe₂⁺ ligand has been replaced by other μ -CN(R')R⁺ and the *t*-CNMe ligand by *t*-CNR" where R, R' or R" = ethyl or 2,6-diethylphenyl, but it does not take place with HOSO₂CF₃ in coordinating solvents such as acetonitrile or with weaker acids such as CF₃CO₂H even in chloroform. If it is carried out on [Fe₂(η -C₅H₅)₂(CNR)-(CNMe)(μ -CO)(μ -CNMe₂)][SO₃CF₃], two products are possible. [Fe₂(η -C₅H₅)₂(CO)(CNMe){ μ -CN(H)R}(μ -CNMe₂)][SO₃CF₃]₂ arises from migration of the CNR ligand, and [Fe₂(η -C₅H₅)₂(CO)(CNR){ μ -CN(H)Me}(μ -CNMe₂)][SO₃CF₃]₂ from migration of the CNMe ligand. Both are formed when R = Et and 2,6-diethylphenyl, but not in equal amounts.

When complexes such as $[3][SO_3CF_3]_2$ are passed down an acetone-alumina column, they lose H⁺ from

^{*} Corresponding author.

Scheme 1. (i) HOSO₂CF₃-CHCl₃ solution; (ii) Al₂O₃-acetone: (iii) $h\nu$ -CHCl₃ solution.

the μ -CN(H)Me⁺ ligand to give high yields (greater than 90%) of derivatives such as $[Fe_2(\eta-C_5H_5)_2(CO)_2(\mu-CNMe_2)][SO_3CF_3]$ ([4][SO_3CF_3]) (Scheme 1) [2b] which shows no N(H) resonance in its ¹H NMR spectrum. This particular compound is an isomer of [1][SO₃CF₃] and reverts to it on standing in solution in the presence of light, but the solid is indefinitely stable in the dark. It can be trapped by reaction with electrophiles, e.g. with HOSO₂CF₃ it reforms [3][SO₃CF₃]₂ (Scheme 1), and EtOSO₂CF₃ converts it to $[Fe_2(\eta-C_5H_5)_2(CO)_2{\mu-CN(Et)Me}(\mu-CNMe_2)]$ -[SO₃CF₃]₂.

Reference and note

- G. Cox, C. Dowling, A.R. Manning, P. McArdle and D. Cunningham, J. Organomet. Chem., 438 (1992) 143, and references cited therein.
- [2] All compounds described herein have been isolated as analytically pure solids. (a) [3] $[SO_3CF_3]_2$: Anal. Found: C, 32.8; H, 3.0, N, 39.0. Calc.: C, 32.9; H, 2.9; N, 4.0%. Isolated yield, 85%. IR (KBr disc): ν (CO) 2048, 2023; ν (μ -CN) 1620 cm⁻¹. ¹H NMR (CD₃CN-HOSO₂CF₃ solution): δ 5.64 (C₅H₅), 5.59 (C₅H₅), 4.11 (CN(CH₃)₂, 3.88 (doublet, J_{HH} = 5.13 Hz, CN(H)CH₃), 11.70 {CN(H)Me} ppm. (b) [4][SO₃CF₃]: Anal. Found: C, 39.6; H,3.3; N, 5.3. Calc.: C, 39.7; H, 3.5; N, 5.2%. Isolated yield, 90%. IR (KBr disc): ν (CO) 2013, 1981, ν (μ -CNMe) 1786; ν (μ -CNMe₂) 1600 cm⁻¹. ¹H NMR (CD₃CN solution): δ 5.09 (2C₅H₅), 4.22 (CN(CH₃)₂), 3.72 (CNCH₃) ppm. For the ¹H NMR spectra the chemical shifts are given as downfield from tetramethylsilane as an internal standard with integrations as shown by the assignments.